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Curvature statistics of some few-body Debye-Huckel and 
Lennard-Jones systems 

J F C van Velsent 
Department of Physics, Ahmadu Bello University, Zaria, Nigeria 

Received 11 January 1979, in final form 2 July 1979 

Abstract. The motion of a conservative classical system is considered as a geodesic flow on a 
Riemannian manifold. Expressions for various curvature tensors are derived. It is shown 
that the Riemann tensor of a conservative system with N degrees of freedom is defined by 
$ N ( N  - 1) curvatures q I ( i  C j ) ,  for which expressions and elementary properties are 
derived. The manifold has negative curvature if all c,, CO. For closed manifolds negative 
curvature implies that the system is a K-system, but we show that one cannot have c,] < O  
everywhere in the configuration space of a conservative system. 

The results are presented of numerical calculationsof the curvature of 8- and 16-particle 
systems interacting according to the Debye-Hhckel and Lennard-Jones potential. Good 
agreement is found between the 8- and 16-particle curvature distribution functions. In 
general, more than half of the c,] at a given point in configuration space are‘negative. 
Negative curvature turns out to be a rare phenomenon, although it is found in more than half 
of the configuration space of Lennard-Jones systems at low density and energy E = 0. 

1. Introduction 

Jacobi’s form of Maupertuis’ least-action principle is a convenient starting point for a 
geometrical formulation of classical mechanics (Goldstein 1950). It shows that the 
trajectories of a conservative system can be interpreted as geodesics on a Riemannian 
manifold. The metric of this manifold is a simple function of the potential and the total 
energy of the system. Given the metric, one can calculate the Riemann tensor, which 
plays a fundamental role in differential geometry. 

In classical mechanics there seem to be at least two good reasons for studying the 
Riemann tensor of a system. Firstly, the Riemann tensor provides a picture of the local 
behaviour of the trajectories. This is expressed in the equation of geodesic deviation 
(see below, equation (4.2)). Particularly important for the few- and many-particle 
systems in statistical mechanics is the fact that the Riemann tensor can be obtained from 
the metric without having to integrate the equations of motion, for integration of the 
equations of motion on a macroscopic time scale should be virtually impossible if the 
system is to have strong ergodic properties (Balescu 1975). But, using the Riemann 
tensor, one can at least compute the local behaviour everywhere. 

Secondly, knowledge of the Riemann tensor enables one to apply, for example, the 
Lobatchevsky-Hadamard theorem on the global properties of the system. This 
theorem (Arnol’d and Avez 1968) says that the geodesic flow on a closed manifold of 

t Present address: Instituut voor Theoretische Fysica, Princetonplein 5 ,  PO Box 80.006, 3508 TA Utrecht, 
The Netherlands. 

0305-4470/80/030833 + 22$01.00 @ 1980 The Institute of Physics 833 



834 J F C vun Velsen 

negative curvature (a property which one can verify given the Riemann tensor) is a 
K-system. A K-system is mixing and ergodic, which shows that calculation of the 
Riemann tensor could be a method of explicitly verifying ergodicity. 

In this paper we would like to describe a practical method for the calculation of the 
Riemann tensor of a conservative system and for testing negative curvature, and to do 
such calculations for some systems of interest to mechanics and statistical mechanics. 

In 0 2 the Riemann tensor of a conservative system is calculated and reduced to a 
useful normal form which greatly simplifies practical computations of the Riemann 
tensor. Notwithstanding this reduction, a formal evaluation of the curvature expres- 
sions is feasible only for systems with a relatively small number of degrees of freedom. 
For larger systems the calculation of the curvature might be done numerically. 

Section 3 introduces the geometric concept of sectional curvature and a particular 
set of sectional curvatures. The elements of this set will here be called eigencurvatures. 
They give a characterisation of the local properties of the trajectories. A method of 
calculating the eigencurvatures is described, and some of their elementary properties 
are deduced. 

In 0 4 manifolds of negative curvature and the Lobatchevsky-Hadamard theorem 
will be discussed, with emphasis on the implications for mechanics and ergodic theory. 

After these theoretical sections we first give two simple examples, namely the 
Kepler and Henon-Heiles problems. The Riemann tensor in these two-dimensional 
systems is a scalar which can be computed analytically. This is done in Q 5. Then we 
turn to curvature computations in some realistic few-body systems. We shall consider 
systems consisting of 8 or 16 particles contained in a cube. The particles interact 
according to the Debye-Huckel (DH) or the Lennard-Jones (LJ) potential. The DH 
potential is repulsive throughout, while the LJ potential consists of an r-” repulsive 
short-range part and an r f 6  attractive long-range part. These systems will be consi- 
dered a6 different densities and energies in order to determine the dependence of the 
curvature on these quantities. The formal expressions for the curvature clearly cannot 
be given (at least, they do not seem to make sense). However, we can obtain a useful 
picture of the behaviour of the curvature by random sampling of the configuration 
space. In that manner the distributions of the various curvature quantities are obtained. 
The method of calculation of the distributions is described in § 6. 

Sections 7 and 8 describe the results of numerical work on the D H  and LJ systems 
respectively. The different interactions and densities give rise to clearly distinguishable 
distributions. The curvature distribution functions are roughly the same for the 8- and 
16-particle systems, apart from scale factors in the energy and curvature. In particular 
the distributions depend on density and energy in the same way. The theoretical 
predictions of $ 0  3 and 4 are verified. The important case of negative curvature, 
representing very erratic behaviour of the trajectories, is found in more than half of the 
configuration space of the LJ system at E = 0. 

In 9 we conclude the paper with some remarks regarding this and future work on 
the curvature of conservative systems in classical mechanics. 

2. The Riemann tensor of a conservative system 

2.1. The motion of a conservative system represented as a geodesic pow 
Consider a classical mechanical system with N degrees of freedom defined by the 
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time-independent Hamiltonian 

(2.1) 

a " a j k  = Sik. (2.2) 

4 = aH/apk, 

1 1 N H ( P I , .  . , P N ,  q 3 qN)=iaiiPiPj+ V(q 9 . .  - 7  4 1, 
where the matrix a " is assumed to be symmetric. The inverse of a ii is denoted by aii, 

The equations of motion of the system are the Hamiltonian equations 

d k  = -aH/aq k, k = 1, . . . , N. (2.3) 

The Hamiltonian is a constant of the motion, dH/dt = 0. For given initial conditions 
p"', q"' therefore, H ( p ( t ) ,  q(t)) is a constant: 

(2.4) 

On a manifold of constant energy in phase space the actual path of the system is an 

H ( p ( t ) ,  q(t)) = H(p'", q"') = E, 

the energy of the system. 

extremum of the integral 

( E  - V(q))1'2(aij dq' dq')"2. (2.5) 

This proposition is Jacobi's form of the least-action principle (Goldstein 1950). Now 
define the path element ds and the metric tensor gij by 

(2.6) ds2 = (E  - V(q))aij dq' dq' = gij dq' dq'. 

The inverse of gij is denoted by g", 

g!'gjk = 8'k. (297) 

Raising and lowering of indices are defined in the usual way, e.g. xi = gijxi. 
Jacobi's form of the least-action principle can now be written as 

S d s = 0 .  (2.8) I 
This shows that the dynamical system defined by equations (2.1), (2.3) and (2.4) is a 
geodesic flow on the manifold of constant energy E, with metric given by equation (2.6). 

Using equations (2.2) and (2.3) the kinetic energy T = E  - V(q) can be written 

(2.9) .= 1 2 a  ii pipi = ~aii(dqi/dt)(dq'/dt). 

Since the kinetic energy is positive definite, so are aii and a jim This shows that the metric 
is positive definite, and that it defines a positive-definite bilinear form (x. y) through 

(x. y) = gijx'y' = XjY'. 

ri. Jk -1 -2g im  (agmj/aqk +agmk/aq'-agik/aq"). 

(2.10) 

The connection coefficients r i j k  are defined by 

(2.1 1) 

For this expression and for the definition of the Riemann tensor (2.17) below the reader 
is referred to Misner et a1 (1973). We shall also follow the sign conventions of this 
reference. 
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N We now assume that aij does not depend on the coordinates q l , .  . . , q . Upon 
substitution of gij  from equation (2.6) r i j k  becomes 

(2.12) 

Defining the quantities 

vi = av/aqi  and V i j  = a* vlaq'aqj, (2.13) 

equation (2.12) can be written as 

The equation for the geodesics can be written 

+riikqi(ik = 0. 

(2.14) 

(2.15) 

The dots now represent differentiation with respect to the arc-length parameter s. From 
equations (2.6) and (2.9) one finds the velocity along the geodesics: 

(2.16) dsldt = J Z ( E  - V ( q ) ) .  

2.2. The calculation of the Riemann tensor 

In terms of the connection coefficients r i j k  the Riemann tensor R 'jkl  can be written in 
the form 

(2.17) R $ k l =  arijr/aqk -arijk/aqi + r i k n r n j l  -rilnrnjk. 
Substitution of equation (2.14) followed by some algebra gives 

4 ( E  - V)2R'jkl = 3aimVm((Yj1Vk - ~ j k Y ~ ) + 3 V j ( 6 i k ~ l - 6 i ~ ~ k ) + ( ~ m ~ m n ~ , ) ( 8 i l ~ j k  - S i k a j i )  

(2.18) im + 2 ( E -  V)(CiimVmkLYjl-CY Vmlajk  -6ilVjk +SikVjl). 

The components R ' jkl are found by raising the index j in R ' j k l :  R jikl = g"R mkl. With 
g'" = a"/(E - V )  one finds 

4 ( E -  V)3Riikl =3aimVm(6jlVk - 8 i k Y 1 ) + 3 a i m V m ( 6 i k V l - - i l V k )  

+ ( V m a  mnV,)(6 i16ik - 8 ' k S i l )  

+ 2 ( E  - V)(6i@imVmk -8ikaimVml-6i@imVmk +SikaimVmt). (2.19) 

The Ricci tensor with mixed components is Rik = Riiki' Using equation (2.19) one 
obtains 

4(E-  V)3Rik = { 2 ( E  - V ) ( ( Y m n V m , ) - ( N - 4 ) ( V m a m n V , ) } 6 i k  

+3(N-2)aimvmvk + 2 ( N - 2 ) ( E -  V ) Q i m V m k .  (2.20) 

Contracting once more gives the Riemann curvature scalar R : 

N - 1  
(E  - V ) 2  

R =  (2.21) 
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2.3. Reduction of the Riemann tensor expressions 

Since ai' in equation (2.1) is real and symmetric there exists a real coordinate 
transformation Aii which transforms a '' into the unit matrix: 

AikAila k' = Sip (2.22) 

Clearly ai, = Si, in the new frame. 
When it is assumed that the aii are independent of the coordinates q l , .  . . , q , then 

the Aij are constant as well. In this case the transformation laws for the v, and vi, are 
given by 

V i  = ( A - l ) * k V j  and vir = (A-l)ik(A-l)ip,i.  (2.23) 

N 

Putting ai, = Si, in equation (2.19) and dropping the prime gives 

4 ( E -  V)3R"k/ = 3vi(Sj,vk -8jkYl) +3Vj(SikV/ -sirvk)+(YmVm)(SjlSjk -8iksjl) 

+ 2(E - V)(Sj/vik - 8jkYil - Silvjk + Sikvjk). (2.24) 

A special case, in which the coordinate transformation A', has a particularly simple 
form, is that of a system of particles with possibly different masses. The matrix aij is 
diagonal with the masses along the diagonal. After the transformation the kinetic 
energy is T = 3 Z p', so that all particles can be assumed to have mass m = 1. 

The expression (2.24) can be simplified by introducing the matrix pi, through 

pjj = 3 v i ~ j  + 2 ( E  - V ) ~ j p  (2.25) 

In terms of this matrix, equation (2.24) can be written as 

4 ( E -  V)3Ri'k/ =/&j$jk +/-bik8jl-(vmvm)Sjk8jl - { p j k S i l  fpil8jk -(vmvm)SilSjk)* (2.26) 

The matrix pii is symmetric and can therefore be diagonalised by an orthogonal 
coordinate transformation. Let the eigenvalues of pi, be denoted Ai. In the new 
coordinates equation (2.26) becomes 

(2.27) 

No summation over i and j is implied on the right-hand side. Similarly we can write the 
Ricci tensor in terms of pi, and its eigenvalues. From either (2.20) or (2.27) one derives 

4 ( E  - V)3R li = ( N  - 2)pii + { Tr(pmn) - ( N  - 1 )  vmvm]Sii ( 2 . 2 8 ~ )  
m 

k # i  

In the last expression no summation over i is implied. 
Finally the Riemann scalar can be written as 

4 ( E  - V)3R = ( N -  1)( 2 Tr(pmn) -N C ~ m ~ m }  
m 

= ( N -  l)[ 2 1 Ai - N  vmvm] .  
I m 

(2.286) 

( 2 . 2 9 ~ )  

(2.29b) 
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For the simple two-dimensional case N = 2  and there is only one non-vanishing 
independent component R i j k l ,  namely RlZI2. The Riemann scalar R = 2RlZl2. If the 
potential is denoted V ( x ,  y )  and = Sij then equation (2.21) reduces to 

(2.30) 

3. Sectional curvature and eigencurvatures 

3.1. Definitions 

Let us now proceed with the geometrical interpretation of equation (2.27). First we 
observe that the curva.ture of a Riemannian manifold can be described in terms of 
sectional or Gaussian curvatures. These curvatures relate to two-dimensional surfaces. 

At  a point Q of the manifold a pair of tangent vectors x and y spans a plane section 
SQ. The sectional curvature K along the plane section is formally defined as 

(Helgason 1962). It follows from this definition that K is an invariant, i.e. it does not 
depend on the particular cholce of the coordinate frame. 

The description of the curvature in terms of the Riemann tensor is equivalent to that 
in terms of sectional curvatures. According to equation (3.1) knowledge of Rl'kl gives 
the K(So) ,  while the converse can also be shown: the curvatures K ( S Q )  for all planes SQ 
at Q together with the metric tensor g,, determine the Riemann tensor at the point Q 
(Bishop and Goldberg 1968). The relation between sectional and Gaussian curvature is 
a simple one. Observe that the geodesics through Q of which the tangent vectors lie in 
So form a curved surface %'(SO). K is the Gaussian curvature of this surface. When 
%'(So) is cap-shaped near Q the curvature K is positive; when the surface is saddle- 
shaped K is negative, and when the surface is locally flat K = 0. 

Now consider equation (3.1). The denominator can be written 

X , X ' y , y '  -X,y'X,y'  = (8'&8'l - 8'18'&)X,Xky,y'. (3.2) 

Therefore, if in a particular coordinate frame the R " k l  can be written in the form 

R l'kl = c,, (8,&8,l - S d / k  ), (no summation convention) 

then c,, is the sectional curvature of the plane section spanned by the tangent vectors in 
the 4' and q' directions. Comparison with equation (2.27) shows that in our case 

c,, = (A,  + A ,  - vmvm)/4(E - V ) 3 ,  i < j .  (3.3) 

Actually the c,, are the eigenvalues of a matrix constructed from the RI'&/. This can be 
shown as follows. Let e, be the unit tangent vector in the 4' direction, and let x = x'e,, 
y = y 'e,. Then there are &"N - 1) linearly independent exterior vector products 
e, A e,( i  <I). They can be denoted ?Pe; a = 1, . . . , 5 N ( N  - 1) representing a pair of 
indices i, j ( i  < j ) .  In the ?Pe basis the exterior vector product x A Y  can be expanded 
according to 

1 
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Lowering and raising of the Greek indices is effected by the matrices 

Gap = ( g i k g j l -  grlgjk) ( 3 . 5 ~ )  

Gap = (gZkg1' - g"g jk ) ,  (3.5b) 
and 

where a = (i, j ) ,  i < j ,  and p = ( k ,  I), k < 1. If in addition y = (m, n ) ,  m < n, then 

G " ~ G ~ ~  = ( s ~ ~ s I ,  - s~,s~, , , ) .  

G==~G~,,U = U a ,  (3.7) 

(3.6) 
Since i < j and m < n this acts as the identity: 

so that one could write GapGp, = S a p .  

Using R I l k l  = -R,,kl  = -Rljlk the numerator can be written 

R"kixlyjxkY1 = R l l k i X  Y X Y 

The denominator of the right-hand side of equation (3.1) is seen to be equal to u,uu. 

I l k !  

This defines the matrices gmP = R I j k l  and 
is symmetric, gap = go". In the new notation the sectional curvature becomes 

= Rllkl. Since R I l k l  = R k l , ,  the matrix 

K = ~ a p u a u p / u , u a .  (3.9) 

If U is an eigenvector of g a p  with eigenvalue A,, i.e. LBapup = A,ua, then K = A, for the 
plane section defined by U. Clearly the eigenvalues of g a p  are invariants. In order to 
find them we use the fact that there exists a real coordinate transformation which 
transforms g,, into the unit matrix. The new coordinate system is called orthonormal. In 
the orthonormal frame it is not necessary to distinguish between upper and lower 
indices. In particular R'lk, = R I l k l ,  which means that is a symmetric matrix. One 
easily sees that in the orthonormal frame R1lkl is given by equation (2.27), and that this 
expression corresponds to the diagonal form of %aa. Comparison with equation (3.9) 
then shows that the eigenvalues of g a p  are just the curvatures c,, defined by equation 
(3.3). For this reason the curvatures c,(i < j )  will henceforth be called eigencurvatures. 

3.2. Elementary properties of the eigencurvatures 

Suppose that the potential is a sum of pair interactions and that Q'( i  = 1 ,2 ,3 )  are the 
centre-of-mass coordinates. Then av/aQ' = 0 and d2V/aQiaQ' = 0 (i ,  j = 1,2 ,3) .  This 
shows that pi, has at least three eigenvalues equal to zero. With equation (3.3) this 
implies that at least three eigencurvatures are negative. 

More generally, let pi, have NO eigenvalues equal to zero, the other eigenvalues 
being different from zero. Let the eigenvalues be ordered in such a way that A I  = A Z  = 
. . , = ANo = 0. Then $No(No - 1) eigencurvatures have the value 

(3.10) 3 - v,vm/4 T . 
Here and in the remainder of this section T denotes the kinetic energy: 

T = E  - V(g) .  (3.11) 
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Assuming # ANo+j for i # j ,  the eigencurvature 

(AN0i-i -vmvm)/4T3 i =  1 , .  . . , N - N o  (3.12) 

is No-fold degenerate. There are No(N -No) eigencurvatures of this type. 
The eigencurvature 

(3.13) 

at last is nondegenerate (still assuming ANo+i f ANoc j ) .  There are ( ) = 

$(N - No)(N -NO - 1) eigencurvatures of this type. 
Next consider the asymptotic behaviour of the cij as given by equation (3.3) for large 

energies, E+m.  Let the eigenvalues of vij be denoted A:”. Then it follows from 
equations (2.25) and (3.3) that 

(ANo+i +ANo+j - umvm)/4T3 i, j = 1, . . . , N -No 

N-No 

cij = (hio) + A ) ~ ’ ) / ~ T ~ + O ( ~ / T ~ ) ,  

Using equation (2.29) one finds 

(3.14) 

(3.15) 

for the asymptotic behaviour of the Riemann scalar. 
From equations (3.14) and (3.15) one concludes that for large energies the curvature 

is essentially determined by the matrix vij of the second derivatives of the potential. 
Another limiting case is represented by the boundary of the physical region. The 

boundary is defined by T = 0. As one approaches the boundary T + 0 and equation 
(2.25) shows that 

(3.16) 

This limiting matrix has one eigenvalue 3umu, while all other eigenvalues vanish. 
Consequently the limiting behaviour of N - 1 eigencurvatures is given by 

cij = umum/2T3+0(1/T2) ,  ( 3 . 1 7 ~ )  

pij + 3 uiuj umum f 0, T + 0. 

while for the other k(N - 1)(N - 2) eigencurvatures one has 

cij = -umum/4T3+0(1/T2).  

Calculation of twice the sum of the eigencurvatures gives the Riemann scalar: 

( N  - 1)(N - 6 )  1 
R = -  Vmum + O( F) 4T3  

(3.176) 

(3.18) 

These expressions show that, sufficiently close to the boundary of the physical region 
(i.e. T sufficiently small), the Riemann scalar always becomes negative. Also we find 
that the curvature in a neighbourhood of the boundary is determined by the first 
derivatives of the potential, i.e. by the forces. This should be compared with the 
behaviour for E += 03, in which case the curvature expressions only contained the second 
derivatives of V. 

To conclude this section, consider a system for which an equilibrium configuration is 
accessible. In an equilibrium configuration vi = dV/dqi = O(i = 1, . . . , N ) ,  hence pij = 
2(E-  V)uii. Let the eigenvalues A!’) of uij = d2V/8qidq’(i, j = 1, . . . , N )  be strictly 
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positive, so that by Liapunov’s theorem (Hirsch and Smale 1974) the equilibrium is 
stable. Then 

ci, = (A jo ’+A~o’ ) /2T2>0 ,  i, j = 1 , .  . . , N, (3.19) 

showing that all eigencurvatures, and therefore also the Riemann scalar, are positive in 
a neighbourhood of the equilibrium configuration. 

4. Manifolds of negative curvature 

A manifold is said to have negative curvature if all sectional curvatures are negative 
everywhere (Helgason 1962). Definition (3.1) shows that this is equivalent to the 
condition that everywhere on the manifold 

(4 .1)  Rijklx y x y < 0 for all tangent vectors x, y. 

The implications of this inequality for the geometry of the geodesics can be inferred 
from the equation of geodesic deviation. Consider a differentiable family of geodesics 
q(t ,  s) parametrised by a scalar t, each geodesic in the family being parametrised by the 
arc-length parameter s. Then the geodesic deviation w is defined as alar,  or in more 
pictorial language, as the limit aqlat of the separation Aql At per unit of t between points 
on neighbouring geodesics with equal s. Let q = aq/& be the unit tangent vector to 
some geodesic in the family and w the geodesic deviation, and let D denote the 
covariant derivative along the geodesic. Then the equation of geodesic deviation 
(Adler et a1 1965) can be written 

i j k l  

D2Wi /ds2  = -Riiklqiwkql. (4.2) 
Now 

D 2  D w i  Dw‘ D 2 w ’  
ds ds ds ds2 ’ 
- (wiwi)=2- -+2wi---  

which upon substitution of equation (4.2) becomes 

D w i  Dw’ 2Rijklwiqiwkq’. D 2  -(wiwI) = 2- -- 
ds ds ds 

If (4.1) holds it follows that 

D 2  
- ( w .  w)>O.  
ds 

(4 .3)  

(4.4) 

(4.5) 

Therefore geodesics on a surface %(So)  which is negatively curved near Q, i.e. 
K(So)<O, will be diverging near Q. For a manifold of negative curvature the 
inequality (4.5) suggests that the distance between neighbouring geodesics is a convex 
function of the arc length, that is, a function curving away from the s axis. 

The argument using the geodesic deviation holds only in an infinitesimal neigh- 
bourhood of a point. It can however be extended to yield a theorem on the local 
behaviour of the geodesics. To formulate this theorem, let q ( s )  and q ’ ( s ’ )  be two 
geodesics, and s‘ = as + b with a and b real numbers. Furthermore, let the length L of a 
curve q ( A ) ,  O G A  G l ,  between the points Q1=q(0) and Q 2 = q ( l )  be defined by 
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L(q)  = 5: ( 4 .  q)1’2 dh, and the distance p between Q1 and Qz as 

p(Q1, Qd= $5 L(q) .  (4.6) 
4 (0) = Qi .q (1) = Q z  

Suppose that there is only one geodesic connecting the points q ( s )  and q’(s’) for 
U < s <I:. Then for (+ < s < I: the distance between q ( s )  and q’(s‘) is a convex function 
of s. For proofs of this and other theorems on the divergence of geodesics on manifolds 
of negative curvature the reader is referred to Busemann (1955). When some of the 
sectional curvatures are positive, the first term on the right-hand side of equation (4.4) 
shows that in general it will not be possible to draw a conclusion about the convergence 
or divergence of the geodesics. 

Let us now consider a property of a manifold of negative curvature which is of great 
interest for the ergodic theory of statistical mechanics, namely the Lobatchevsky- 
Hadamard theorem (Arnol’d and Avez 1968). This theorem states that the geodesic 
flow on a closed Riemannian manifold of negative curvature is a C-flow. Heuristically a 
C-flow is a flow in which all trajectories diverge exponentially with respect to both past 
and future. A formal definition of a C-flow can be found in Arnol’d and Avez (1968). 
Next we note that if a geodesic flow is a C-flow , then according to Anosov (1967) it is a 
K-system. So, for a conservative system in classical mechanics, the Lobatchevsky- 
Hadamard theorem and Anosov’s result imply that if the manifold E - V 3 0 is closed 
and if all eigencurvatures c,, are negative, then the system is a K-system. 

For a definition of a K-system the reader is once more referred to Arnol’d and Avez 
(1968). Here we recall that the most easily visualised property of a K-system is that it is 
mixing of all degrees. This means the following. Let P be a point in the phase space r, 
P = p ,  q E r. rhen the translation T, over a time interval t is defined by TrP = p ( t ) ,  q( t ) .  
Consider some measurable set A c r. The measure of A is denoted p ( A ) .  Assume 
p ( r )  <CO so that p can be normalised: p ( r )  = 1. Then the system is mixing of degree iz 

if for any n-tuple of measurable sets A1,  . . . , A,  c r 
lim p(Tr,A1 n. . . fl T,,A,,) -- p(A1).  . +(A, , ) .  (4.7) 

min lf,-r,l+m 
I + I  

The case n = 2 corresponds to what is simply called mixing. In its turn, mixing implies 
ergodicity. 

One sees that a K-system is quite high in the hierarchy of ergodicity, and that 
consequently the geodesic flow on a manifold of negative curvature must be very 
erratic. 

In principle the Lobatchevsky-Hadamard theorem enables one to establish whether 
a classical mechanical system with a given potential is a K-system. All one has to do is 
compute the eigencurvatures (3 .3 )  and check whether they are negative everywhere. 
Regrettably equation (3 .17)  shows that near the border of the physical region there are 
always positive eigencurvatures (even though for N 3 7 the averages of the eigen- 
curvatures and the Riemann scalar are negative). Therefore the curvature calculations 
can at most prove local C-system behaviour of the system. They cannot be used to 
prove (or disprove) that the system is a K-system, which is a global property. 

5. Two simple examples: the Kepler and Henon-Heiles problems 

Both problems have two degrees of freedom, so that the Riemann tensor is a scalar and 
R = 2R’212 .  It therefore suffices to compute R according to equation (2 .30 ) .  
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Let us first consider the Kepler or gravitational two-body problem. We take 
V(x ,  y)  = - l / r  = - ( x 2  + y2)-l12 and assume aii = Sip Substitution of the derivatives of 
V in equation (2.30) yields 

This shows that the curvature is positive when E <0, i.e. for elliptic orbits. A small 
variation of initial conditions at constant E will change such an orbit only a little. 
Indeed, elliptic orbits are stable in the sense of Liapunov. The distance between points 
on neighbouring elliptic orbits is a periodic function of time. 

For parabolic orbits R = E  = 0. 
For hyperbolic orbits E > 0 and the curvature is negative. One easily verifies that 

the distance between points on different hyperbolae is a convex function of time. Since 
the configuration space is unbounded, the negative curvature does not imply that the 
system is a C-system. 

The configuration space of the HCnon-Heiles (1964) potential 

V(x,  y )  = i ( X 2 +  y2+2x2y -5y3) (5.2) 

is bounded for E < i .  But for this system one finds 

R =  ( E - V ) 2  [2+--1-{ E - V  (q+(3}] ax >o.  (5.3) 

This result may be compared with the local stability analysis of Toda (1974, see also 
Brumer and Duff 1976). These authors define local instability and divergence of 
trajectories in terms of the matrix vlJ = a2V/aq‘aq’: the system shows local instability 
and the trajectories are said to diverge if one of the eigenvalues of vlJ is negative. Since 
vIJ is not a tensor, such a definition depends on the coordinatisation, as pointed out 
already by Benettin et a1 (1977). If one wants to define (local) stability and instability 
properties in a coordinate-independent way this should be done in terms of suitable 
tensors. 

In the HCnon-Heiles system Toda finds local divergence of trajectories for 
( x 2  + y2)1’2 > i, that is, for E > & the system shows exponential instability in part of 
phase space. However, this does not allow one to conclude that the system is a 
C-system. Our result (5.3) on the other hand does not exclude the possibility that one 
can find a coordinate frame in which vIJ has negative eigenvalues. 

6. The calculation of the curvature statistics 

The curvature statistics have been calculated as a function of the number density n and 
the total energy E. The number density determines the size of the cube containing the 
particles. The sides of the cube have length L such that NJL3  = n, Np = 8,16 being the 
number of particles. 

The MNF (Minnesota Fortran) random-number generator is used to generate 
random positions for the particles. For those configurations which have a positive 
kinetic energy, ( E -  V)>O, the curvature is calculated. In other words, we are 
sampling the part of configuration space where ( E  - V )  > 0.  
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The curvature is calculated by diagonalising the matrix F~~ The algebra of the 
computation is straightforward. The eigenvalues are computed by Jacobi's method as 
adapted from Carnahan et a1 (1969), and the errors were checked using Gershgorin's 
inequalities (Froberg 1969). Using equation (3.3) the eigenvalues of F~~ yield the 
eigencurvatures. According to 8 3 the total number of eigencurvatures is zN(N - 1). 
Here N = 3Np, so an 8-particle system has 276 and a 16-particle system 1128 eigen- 
curvatures. The number of negative eigencurvatures of a configuration will be desig- 
nated N-. Using the first equality of equation (3.15) one obtains the Riemann 
curvature scalar. 

Having calculated these quantities for an ensemble of randomly chosen configura- 
tions, one can derive the distributions of the eigencurvatures cii, the number of negative 
eigencurvatures N- and of the Riemann scalar R. They are denoted P,, P- and PR, 
respectively. The distributions will be presented as histograms. P, is normalised to 276 
and 1128 for the 8- and 16-particle systems respectively, while P- and PR are 
normalised to 1. The number of configurations in an ensemble has been chosen such 
that a relative standard error of the order of 10% in the larger values of the distributions 
was obtained. The errors are indicated in the graphs. For some small values no error 
bar has been drawn in the graphs. In these cases the absolute error is negligible. It has 
been verified that the numerical errors in the eigenvalues do not affect the distribution 
functions. 

The graphs also give the ensemble average v of the potential energy and the 
ensemble average N- of the number of negative eigencurvatures. The errors given for 
these quantities are the standard errors in the mean. 

It turns out that, in general, the eigencurvatures of a given configuration and those of 
different configurations are of very different orders of magnitude. For this reason a 
logarithmic scale is used in the graphs of P, and PR. 

7. Curvature statistics for Debye-Huckel systems 

The Debye-Huckel potential is given by V(r) = e-"'/r, K-' being the range of the 
potential. It provides a model for hot dilute plasmas (see e.g. Chen 1974) and for dilute 
solutions of electrolytes (see e.g. Munster 1974). It is convenient to choose the unit of 
length equal to IC- ' .  The potential of the Np-particle system can then be written as 

Curvature calculations have been made for the densities n = 0.001, n = 1 and n = 1000. 
These densities correspond to average interparticle distances of the order of 1 0 , l  and 
0.1 respectively. For each of the densities, at least three energies have been considered. 
For low energies the first term in the right-hand side of equation (2.25) dominates, for 
intermediate energies both terms are of the same order of magnitude, while for high 
energies the second term dominates. That is, for low energies the curvature is mainly 
determined by VV, and at high energies by the second derivatives a2V/aqidq'. The 
results of the computations for the 8-particle system are given in figure 1 for n = 0-001, 
figure 3 for n = 1 and figure 5 for n = 1000. Those for 16 particles are given in figures 2, 
4 and 6 for n = 0.001, n = 1 and n = 1000 respectively. 
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&?particles. First let us consider the eigencurvature distributions P,. At all densities and 
for every energy one notices a group of negative and a smaller group of positive 
eigencurvatures. At  low energies the first group is several times larger than the second. 
The fraction of negative eigencurvatures steadily decreases with increasing energy, but 
even at the highest energies considered here it still exceeds the fraction of positive 
eigencurvatures. 

Because of the denominator in equation (3.3) the absolute values of the eigencur- 
vatures decrease with increasing energy. Therefore the two groups will move in the 
direction of zero as E increases. One further observes that the peaks tend to sharpen 
with increasing density, or to put it the other way around, they tend to broaden with 
decreasing density. The explanation for this is to be found in the range of configurations 
accessible to the system, which is greater at lower densities. Given that the particles are 
confined to a box, they can still be close at low density, but at high density they cannot be 
far apart. 

The distributions P- of the number of negative eigencurvatures show that for nearly 
all configurations the majority of the eigencurvatures is negative. However, none of the 
configurations has only negative eigencurvatures, or 254 or more negative eigencur- 
vatures for that matter. In the low-energy cases, the high peak in the last interval but 
one is caused by the large fraction of configurations with N- = 253. These configura- 
tions represent the limiting case (3.17) or ( E  - V )  + 0. The percentages for the lowest 
energies are given in the following table: 

n = 0.001 E = 0.01 36 * 3% 

n = l  E=10 37 f 3% 

n = 1000 E = 250 32 f 3 '/o. 

For all densities the average number of negative eigencurvatures N- decreases with 
increasing energy. 

Though the eigencurvature distributions at corresponding energies are rather 
similar, the Riemann scalar distributions PR turn out to be very different. 

At low densities a large part of the Riemann scalars is positive even for low energies. 
The fraction of negative curvature scalars decreases with increasing energy and would 
seem to vanish for very high energy. 

The density n = 1 is found to represent an intermediate case: at low energies all 
Riemann scalars are negative, at high energies they are nearly all positive. The 
transition between the case of negative and the case of positive Riemann scalars is not a 
sharp one, but at E = 50 about half of the Riemann scalars is negative, half positive. 

At high densities and not too high energies the Riemann scalar is negative 
everywhere. Only at very high energy does one find an appreciable fraction of positive 
Riemann scalars. 

In addition to the distributions P,, P- and PR and the averages v and N- we could 
also have given the average of R for each (n ,  E )  pair considered. This average is found 
to be rather meaningless, however. It is determined entirely by the extrema1 values in 
the R distribution. It could not therefore be evaluated reliably in the present study. 

With respect to the number of random configurations needed in order to obtain 
sufficiently small standard errors in the distributions, one observes that more 
configurations are needed at the lower energies. This is apparently due to the shape of 
V ( r l ,  . . . , r N )  considered as a 3N-dimensional surface. At low energies ( E  - V) turns 
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Figure 1. Curvature statistics of an 8-particle DH system for n = 0,001. The number of 
configurations in the samples is 200 for E = 0.01 and E = 0.1, and 100 for E = 1. 
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Figure 3. Curvature statistics of an 8-particle DH system for n = 1. The number of 
configurations in the sample for E = 10 is 200; for the other energies it is 100. 
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Figure 2. Curvature statistics of a 16-particle DH system for n =0.001. At  each of the 
energies the number of configurations in the sample is 100. 
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Figure 4. Curvature statistics of a 16-particle DH system for n = 1. The number of 
configurations in the sample for E = 100 is 22; for the other energies it is 20. 
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Figure 5. Curvature statistics of an 8-particle DH system for n = 1000. The number of 
configurations in the samples is 200 for E = 250 and 100 for the higher energies. 

out to vary relatively strongly over the accessible part of configuration space. Since 
(E  - V )  enters the curvature formulae through both (2.25) and (3.3), this results in a 
larger spread in the number of eigencurvatures in a given interval. 

16particles. The curvature distributions for the 16-particle Debye-Huckel systems are 
given in figures 2 , 4  and 6. The distributions for n = 1, E = 20 are not given there since 
the eigencurvatures are of too many different orders of magnitude, making it impossible 
to obtain acceptable statistics in the computer time available. However, the case of 
1081 negative and 47 positive eigencurvatures (corresponding to N- = 253 for the 
8-particle system) was found for 70*8% of the configurations sampled. At E = 100 
this fraction has decreased to 65%. The last estimate also holds for n = 1000, 
E = 1000. For n = 0.001, E = 0.2 the limiting behaviour was found for 1 4 1 4 %  of the 
configurations. These fractions are appreciably lower than the corresponding ones for 8 
particles; in other words, the fractional volume of the boundary region of the domain 
E - V > 0 is much smaller. But this is to be expected since the fractional volume of the 
boundary region of E -  V>O in the 48-dimensional configuration space of the 16- 
particle system will in general be much less than the corresponding fraction in the 
24-dimensional configuration space of the 8-particle system. 

Comparison of figures 1 and 2 for n = 0.001, 3 and 4 for n = 1 and 5 and 6 for 
IZ = 1000 shows that at a given density the behaviour of the curvature of the 8- and 
16-particle systems is strikingly similar. The similarity is perhaps most clearly demon- 
strated in the R-distribution histograms. There one finds that for n = 0.001 most R 
values are positive, while for n = 1000 nearly all R-values are negative, irrespective of 
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Figure 6.  Curvature statistics of a 16-particle DH system for n = 1000. The number of 
configurations in the samples is 40 for E = 1000 and 20 for the higher energies. 

the number of particles in the system. At n = 1 and low energies most R-values are 
negative, but at high energies nearly all are positive. 

One concludes that the qualitative properties of the curvature distribution functions 
which we have calculated here are meaningful not only for one particular number of 
particles, but are characteristic at least for systems with O(10) particles. The quan- 
titative differences, which are most pronounced at n = 0.001, have to be explained by 
the factor ( E  - V )  in equations (2.25) and (3.3), and as boundary effects. 

A remark should be made here with respect to the distributions P- of the number of 
negative eigencurvatures. Several of the histograms of these distributions for the 
%particle system show a gap in the last interval, which represents 254 s N- s 276. 
Clearly this gap is somewhat artificial: the important case of N- = 253 is included in the 
last interval but one. The corresponding case for the 16-particle system, N- = 1081, is 
included in the last interval, which extends from 1034 to 1128. 

8. Curvature statistics for Lennard-Jones systems 

As a representative example of a potential with a short-range repulsive and a long- 
range attractive part let us consider the Lennard-Jones potential 

V ( r )  = 4.{(u/r)l2 - (8.1) 
This is a realistic model for the interaction between the atoms of noble gases such as Ar 
(see Barker and Henderson (1976) for equilibrium, and Copley and Lovesey (1975) for 
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Figure 7. Curvature statistics of an &particle LJ system for n =0.001. The number of 
configurations in the samples is 100 for E = 0 and E = 0.1, and 200 for E = 0.01 and E = 1. 

dynamical properties). It is convenient to choose U as the unit of length, and units of 
mass and time such that 4~ = 1. Then the potential of an Np particle LJ system is given 
by 

For Ar, using Raman's value of E as quoted by Copley and Lovesey (1975), the kinetic 
energy 5 kT per particle at 90K is about 0.3 and at 273K about 1. 

gparticles. For theLJ potential we have studied the densities n = 0.001 and n = 1/J2= 
0.707, which correspond to the gas and liquid phase of Ar respectively, if we use 
Raman's value of a- and the experimental data given in Gray (1957). The lowest energy 
considered in both cases is E = 0. For n = 0.001 at this energy, the tKo terms in 
equation ( 2 . 2 5 )  in general are of the same order of magnitude. For n = 1 / J2 ,  however, 
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Figure 8. Curvature statistics of a 16-particle LJ system for I I  = 0.001. The number of 
configurations in the sample for E = 0 is 51; for the other energies it is 100. 
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Figure 9. Curvature statistics of an 8-particle LJ system for n = 1/45. At each of the 
energies the number of configurations in the sample is 200. 
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the vp, term is often much larger than the vf, term. In fact at E = 0 the combination of 
253 negative and 23 positive eigencurvatures is found for 5 0 1  4% of the'configurations. 
For n = 0.001 only two of the 100 configurations sampled had N- = 253. 

For n = 0-001 the highest energy considered is E = 1. Here it is found that, on 
average, the term ( E  - V ) v ,  is Zuch larger than vp,, and that the curvature is essentially 
determined by vl,. For n = 1/J2 the highest energy considered is E = lo4. This is not a 
high energy in the sense of equation (3.14): the curvature is not found to be dominated 
by vII. 

The eigencurvature distributions P, (figures 7-9) show a superficial resemblance to 
those of the DH systems. There are two groups of eigencurvatures, namely a group of 
negative eigencurvatures and a group of positive ones. At low energies, the total 
number of negative eigencurvatures in the ensemble is several times the number of 
positive eigencurvatures, but with increasing E the fractions tend to become equal. 
Also with increasing E the absolute values of the eigencurvatures decrease in accor- 
dance with equation (3.3). 

Let us now take a closer look at the case of n = 0.001 (see figure 7). The curvature at 
E = 0 is extremely interesting in that for 65 f 6% of the configurations all eigencur- 
vatures are negative. The detailed distribution of the number of negative eigencur- 
vatures is shown in the inset of figure 7. (Three values fall outside the range of this 
figure: one case of 265 and two cases of 253 negative eigencurvatures.) Perhaps it 
should be remarked that the case of negative curvature (N- = 276) is quite different 
from the limiting case of 253 negative eigencurvatures as defined by equation (3.17). 
The last situation is caused by the peculiar form of gf, in the limit (E  - V )  + 0, which 
results in only one non-zero eigenvalue. Equations (3.17a, b )  show that the resulting 
positive eigencurvatures are of the same order of magnitude as the negative ones. In 
this sense one cannot say this limiting case is close to (completely) negative curvature. 

At E = 0.01 negative curvature is found for only 6 f 2% of the configurations. The 
eigencurvature distribution and the distribution of the number of negative eigencur- 
vatures have changed drastically. As E increases still further to 0.1 and 1 the 
distributions change more gradually. The distribution P- of the number of negative 
eigencurvatures is found not to be very smooth. In particular, the dip in this distribution 
for 208 G N- C 230 seems to be statistically significant. Since the energies E = 0.1 and 
E = 1 represent the high-energy case this could be due to a peculiarity of the eigenvalue 
distribution of vl,. 

The Riemann scalar was found to be negative for all configurations and energies 
considered at this density, with a single exception: one positive curvature scalar out of 
200 was found at E = 1. 

For the liquid density quite different statistics are found (see figure 9). The 
eigencurvature distributions are of the type met in the low-density DH systems (cf 
figures 1 and 2). At E = lo4 the number of negative eigencurvatures is still much larger 
than the number of positive eigencurvatures. No negative curvature configuration was 
found at this density. Indeed, there was no configuration with N-2254 .  The dis- 
tribution of the number of negative eigencurvatures resembles a flight of stairs for all E, 
excepting the deviation at E = lo4 which could be of a statistical nature. At all energies 
considered the fraction of configurations with N- = 253 is rather large. The percen- 
tages are: 

E 0 10 1 o2 1 o3 1 o4 
p N _ = 2 5 3  5 0 1 4  4 4 + 3  3 8 f 2  3 9 f 2  3 8 f 3 .  
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This large and consistent fraction should probably be explained as a consequence of the 
high density. The high density means close pairs, which together with the strong 
r-dependence of the LJ potential (equation 8.1) result in dominance of the vivj term in 
equation (2.25). 

The Riemann scalar distributions show not only that there is no case of negative 
curvature but also that there is not an energy at which all Riemann scalars are negative. 
At E = 0 the percentage of positive curvature scalars is 24 f 3, and this percentage 
increases monotonically to 62 f 3 at E = lo4. Note that this trend is hardly discernible 
(if at all) in the histograms for P,. 

16 particles. The curvature distributions of the 16-particle LJ system have been 
determined only for n = 0.001. For n = I/& it was not possible to construct a 
sufficiently large ensemble in the time available. We note that 8 = 23 particles at liquid 
density easily fit into a cube, but for 16 particles the fitting problem is forbidding. 

For n = 0.001 figure 8 shows good agreement with figure 7 of the results for 8 
particles. At E = 0 the percentage of configurations with negative curvature is 5 1 f 5 % .  
This is a bit less than the 65 f 6% in the &particle case, but on the other hand the 
percentage of negative curvatures has increased from 99.5 i 0.1 to 99.7 f 0-2  per cent. 

9. Concluding remarks 

In 8 3 it was shown that a conservative system cannot have negative curvature 
sufficiently close to the boundary of the physical region. In the two preceding sections it 
was found that negative curvature is also a rare phenomenon farther away from the 
boundary. Negative curvature seems to be too strong a condition for conservative 
systems, implying a degree of complexity of the trajectories encountered at most 
locally. As a topic for further research it would be interesting to delimit the regions of 
negative curvature and to compare their size with that of the eigencurvatures. 

A much weaker condition which a conservative system theoretically could satisfy is 
that the Riemann curvature scalar is negative everywhere. This is equivalent to the 
condition that the average of the eigencurvatures is negative everywhere. In several of 
the DH and LJ systems considered above no configuration was encountered with a 
positive Riemann scalar. Perhaps it is possible to give a formal proof of R < 0 
everywhere for certain potentials in appropriate ranges of density and energy. But now 
there is another difficulty in that it does not seem to be known what R < 0 everywhere 
means in terms of the ergodicity of the system. 

The 8- and 16-particle systems were found to have essentially the same curvature 
statistics, but it remains to be investigated whether systems with particle numbers 
greater than those studied here by orders of magnitude have the same type of 
distributions. In particular one would like to know what happens to the fractions of 
negative curvature and negative Riemann scalar. 
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